VMI 2.0: A Dynamically Reconfigurable
Messaging Layer for Availability, Usability, and
Management

Scott Pakin and Avneesh Pant

Abstract—As system area networks (SANs) grow in size, A. Motivation
and organizations pool their SANs over the wide area into . . . L
even larger compute platforms (commonly known agrids), Given point-to-point communication at near-
it becomes increasingly dfficult both to manage and to ex- hardware speeds, the next big challenge for cluster
p|0|t the available resources. The key issues is the Spac%nd grld Computlng |S tO prOVIde features and ser-

of grid computing are availability, reliability, and man- . S -
agement. Availability is an issue, as network hardware is vices that enhance avallablllty, usablllty, and man-

more likely to fail in a large network than in a small one. agement. This was our goal when implemen_ting
Usability is an issue, as dferent SANs use dferent net- VMI 2.0, the second version of the Virtual Machine
works, and inter-SAN communication frequently uses dif- |nterface communication middleware running at the

ferent networks from intra-SAN communication. Andman- — Natinna| Center for Supercomputing Applications
agement is an issue, as it is more flicult to find and isolate

1

problematic components of a large, heterogeneous system(NCS_A)-)

than a small, homogeneous one. Grids—collections of SANs, storage servers,
This paper introduces VMI 2.0, a middleware communi- and other resources that lie scattered across the

cation layer that addresses the issues of availability, usabil- Internet—are a diicult environment to harness
ity, and management in the context of large-scale SANs in-)

terconnected over wide-area grids. Novel features include However, because of their inherent scalability, they
the ability to stripe data across heterogeneous networks, Can serve as a source of massive computation power.
the ability to fail over from one network onto a heteroge- Unlike a typical SAN, a grid is composed of het-
neous network, _and the ability to add data filters and othgr erogeneous networks, CPUs, and operating systems.
features dynamically, remotely, and even on per-connection .
bases. Metacomputing systems such as Globus [7] and Le-
gion [8] provide services to applications which are
distributed across the grid. Examples of these ser-
l. INTRODUCTION vices include authentication and authorization, di-
rectory and naming services, and high-level fjf@.I

HEN gigabit networks, such as Myrinet [1]’N -
) L ote that all of these services rely on lower-level
Giganet|[2], and Gigabit Ethernet [3], starte% o y

tob I Kstati lusters ¢ mmunication layers—usually sockets over IP—to
0 become commonplace on workstation clUstets, nage the actual communication.
communication performance bottleneck shifted from

network hardware to the messaging software AThis paper introduces VMI 2.0, our new middie-
ging —_Ware communication layer. Like a sockets layer, it

number of highly optimized messaging Iayers_':afbstracts away the underlying communication inter-

Messages [4], Active Mess_ages; [5], and U-Net [6 aces and presents higher-level communication lay-
to name a few—arose to bridge the gap between the

performance achievable by the hardware and that r§|.\l/(V|th a COE S|st|ent V|evr\]/ of tEe\r/II\eAtlwzo Bk (Fighite 1).
served by applications. As a result of thesioses, niike a sockets layer, though, - ¢an aggre-

apolications can observe point-to-noint communic ate a number of disparate communication interfaces
tigrﬁ) erformance near thafachievapl))le by the raw n#to a coherent whole. For this to work, VMI 2.0
workp hardware y ust be cognizant of a variety of interface-specific
' communication details:
Scott Pakin and Avneesh Pant are with the National Center
for Supercomputing Applications, Urbana, lllinois, USA (e-mail: *Currently, VMI 1.0 is used by all applications on all of NCSAs
spakin@ncsa.uiuc.epu, apant@ncsa.uiuc.edu). production clusters.

mailto:spakin@ncsa.uiuc.edu
mailto:apant@ncsa.uiuc.edu
http://www.ncsa.uiuc.edu
http://www.ncsa.uiuc.edu
mailto:spakin@ncsa.uiuc.edu
mailto:apant@ncsa.uiuc.edu

2

Application interfaces on a few nodes; others may lack a particu-
lar interface while awaiting a replacement for a failed

MPI [Sockets Globus| Legion part.
VMI 1.0 defines a basic network abstaction that
VMI 2.0 supports point to point communication. To handle

interface-specific communication details, VMI 1.0
VIA GM cp uses dynamically loadable modules, each of which
InfiniBand| Myrinet GigE implements a simple APIsend receive connect
_ disconnect etc.) in terms of whatever a particu-
Fig. 1 lar network interface provides. During initialization,
ReLtion oF VMI 2.0 10 OTHER ENTITIES a process loads the modules listed in a machine-
specific configuration file, which describes the net-

) work interfaces that that machine contains.
Flow control If a receiver has no space to

receive a message, does the. vMI 2.0
sender block, or is the mes-
sage dropped?

Buffer managemenDo memory regions have to

After VMI 1.0 ran for some time on NCSA's pro-
duction clusters, we found that users appreciated the
i ability to run their applications unmodified onfidir-
be registered _bef(_)re they Caréntly configured clusters. In particular, users liked
L hold communication data? being able to use shared memory for high-speed
Packetization How large of a message can.,mmynication within an SMP and without needing
the interface send at onCety know in advance which processes would lie in the
Wha_‘t message sizes are Moy, me SMP. In addition, cluster administrators liked
. efficient? . being able to mark a network as unavailable (e.g., for
Error detection Does the mt_erface detec pgrades) merely by commenting out the apppropri-
data errors? Link erors? Oryie'jing in the machine-specific configuration file.
is data silently dropped? Extended use of VMI 1.0 revealed a number of
Does the interface deliver|imitations of its design. First, only at process startup
data in order? time could a process select a network to use to com-
Itis unreasonable to expect application writersmynjcate with each of its neighbors. If a network
or even metacomputing service providers—to knowsrq or switch failed, the application would need to
all of the characteristics of all of the networks thale restarted, even if an alternate network could be
a progam will run on. Sockets interfaces do hidgsed to restore global connectivity. Ideally, a mes-
most of these details; however, they are too heawging layer should transparently switch the applica-
weight a solution and, as a result, tend to perforfiyn onto an alternate network. Second, it is common
poorly on SANs relative to lighter-weight interfacesor NCSA's clusters to contain multiple networks,
As Figure[1 illustrates, VMI 2.0 serves as the mids,ch as Gigabit Ethernet and Myrinet, yet a VMI 1.0
dieware layer that bridges heterogeneous interfagggcess statically determines which of those to use
with metacomputing servers, such as Globus and ltg-contact each of its peers. Ideally, a messaging
gion, and higher-level programming interfaces, sugiyer should stripe data across all available networks

Message ordering

as MPI [9] or even sockets. to achieve better bandwidth. Third, there is no way
to monitor the health of all of the cluster’'s networks
B. VMI1.0 from a remote workstation. And while it was nice

VMI 1.0 [10] was our first attempt at transparentlyhat an administrator could mark networks as avail-
aggregating multiple lower-level communication inable or unavailable, his changes would apply only to
terfaces. The goal was to enable binary portabilityew jobs, not to running ones. Ideally, a messaging
of MPI applications across NCSA’s various clustertayer should provide remote monitoring and manage-
These clusters—sometimes even sets of nodes witment. Finally, VMI 1.0 was designed for SANs and
a single cluster—contain dissimilar network configparallel programs—static sets of mutually cooper-
urations. Some may have experimental new netwaaking processes that communicate over low-latency,

3

high-bandwidth, low-error networks. However, thelication may load a profiling module to profile all
advent of the TeraGrid project (and NCSA's partimetwork trdfic but load an encryption module only
ipation therein) necessitates a messaging layer tbatthose links that traverse clusters.

can work dficiently over both wide-area links and 5) Portability: All of the concepts underlying
SANSs and that can handle dynamic clisetver and VMI 2.0’s design are platform independent; only
peer-to-peer communication patterns in addition to few isolated functions need to be rewritted to
static, mutually cooperating processes. port VMI 2.0 to a new operating system or proces-

VMI 2.0 is the result of those desiderata. Whilsor architecture. VMI 2.0 currently runs on Intel
VMI 2.0 retains VMI 1.0’'s multiple-network sup-1A32 and 1A64 systems as well as on Sony’s MIPS-
port, it is a completely redesigned messaging layleased PlayStation 2 (!). Berent networks are sup-
that greatly expands upon its predecessor. We idemidrted with modules. Merely by writing a module
fied the following features as those necessary to a@o-interface to a (typically vendor-supplied) lower-
hance the availability, usability, and management l@vel messaging layer, a developer can utilize all of
grid and cluster communication. VMI 2.0’s features on a new type of network.

1) Data striping across heterogeneous networks: 6) Remote monitoring: A system administrator
By striping data across multiple networks, a messagan manully assess the health of a single applica-
ing layer can achieve greater communication banigbn running on a small cluster. By integrating pro-
width than were it limited to a single network. Beeess monitoring into the VMI 2.0 middleware, we
cause VMI 2.0 runs above the lower-level, devicérelps users ensure that their applications are running
specific messaging layers, it is able to stripe data reshoothly on an Earth-spanning cluster of clusters
just across multiple networks of the same type, bahd system administrators see which nodes or net-
also across heterogeneous networks. As far as werk hardware need repairs.
know VMI 2.0 is the first messaging layer to support 7) Remote managementlot only does VMI 2.0
heterogeneous data striping. make process state visible across the Internet, but

2) Failover across heterogeneous networkSm- it provides control over individual nodes and pro-
ploying a similar mechanism to that used for stripingesses (or groups thereof). For instance, a user trying
VMI 2.0 can also do heterogeneous failover. If, foio debug a program can dynamically load a packet-
example, a Gigabit Ethernet cable comes unpluggéstjging module into a running application—and un-
or a Myrinet switch is poweredffy an application load the module when the bug is found. Using a sim-
can transparently continue to utilize a remaining nétar mechanism, a system administrator can mark a
work. As far as we know VMI 2.0 is the first mesparticular network unavailable before upgrading its
saging layer to support heterogeneous failover. device drivers or firmware. (VMI 2.0 could then fail

3) Scalability upwards of many thousands ajver onto one of the other networks, transparently to
nodes: Not only are organizations such as NCSAunning applications.)
building individual clusters consisting of thousands 8) Support for both parallel and distributed com-
of compute nodes, but arffert is underway to link puting models: VMI 2.0, like VIA [11], deals ex-
thousands of clusters together into an Internet-widtusively with point-to-point connections; it has no
grid of available compute power. To béective in concept analogous to an MPI communicafdr [9], a
a grid environment, VMI 2.0 localizes all decisiongroup of processes exhibiting mutual trust. The con-
making to minimize the impact of wide-area delaysection approach, although a lower-level abstrac-
on SAN performance. tion, can be used to implement both the parallel-

4) Dynamic feature configuration: VMI 2.0 computing model (e.g., MPI) and the distributed-
utilizes a “plug-in” module interface, with whichcomputing model (e.g., most transaction systems).
VMI 2.0’s features can be extended. Because these
modules can be installed into and removed from run-Of course, it is important to provide all of
ning programs, an application need load only thofiee aforementioned features without sacrificing raw
modules that are actually required, thereby not sa@mmunication performance.
rificing performance on unused features. ModulesThe rest of this paper is organized as follows. Sec-
can be global to an entire application or local to aion [lll describes the VMI 2.0 architecture and how
individual network connection. For example, an apve were able to achieve the goals listed above. We

http://www.teragrid.org

4

evaluate the performance of VMI 2.0 in Sect|on llican specify a function to call when the IRB is com-

In Sectior{ I we describe the research projects thaleted and a context (an arbitrary pointer) to pass to

are most closely related to VMI 2.0. Finally, we dravthat function.

some conclusions about VMI 2.0 in Sectloh V. When an IRB reaches the last device on a send
chain (known as a “sink device”), the device has two
options for dealing with the IRB. If the IRB can

Il. | MPLEMENTATION be processed immediately, the devammpleteghe
%38, causing all of the completion functions to be

VMI 2.0 is implemented as a user-level messa s)
P %Ied. If, however, a long IRB processing delay is

ing layer plus a set of deemon processes. The ba ;)
architecture is modeled after the Windows NT kern@f(peCtEd (as in the case of a connect IRB), the device

architecture [12]. The reason we used NT as a des %ndahg tIRB ar|13d C(d)mpletelsr\:tB(aserci‘hrotrr]]ously) las
basis is that we believe the architecture is extrem or; as | kcan. ending an h e{‘/?/”zso e atpﬁ) |(cj:a-
extensible, yet exacts minimal performance pena N 10 Make progress even when 1S statled.
due to its inherent asynchronicity—features we fll’]g Data model

as applicable to messaging layers as to operating sys- . .
tems. VMI 2.0 encapsulates data using a number of dif-

ferent data structures. (Figur¢ 3). At the lowest
level is abuffer, which represents a contiguous block
A. IRB processing model of memory that can be transmitted over a network.
Most user-level messaging layers, such as VIPL [11]

VMI 2.0 devices, the loadable modules that talk t nd GM [13], require data to be “registered” (which

the network or filter communication data, are linke . ; L .
: . ' sually implies pinning it into physical memory) be-
together on chains. VMI 2.0 initially defines tw: yimp P g bpny y)

hai the default d chai d the default ore it can be used in a communication operation.
chains—the default send chain an € detault Tere \/M1 2.0 API contains calls to register and dereg-
ceive chain—although more can be created dyna

. : . ter bufers, and these calls are forwarded to the
ically. When a message is sent, each device on

4 chain h unity t difv it ; rce and sink devices on demand.
send chain has an opportunity to modify it (€.9., 10 ggcase biier registration is usually expensive

.transform the data or attach a he;ader) bgfore Pa3Rd typically restricted to page-aligned regions
ing the message to the next device and finally infp,se size is a multiple of the OS page size, it would
the netwqu. Similarly, vv_hen a Message IS reCeiVefia inggicient to register every piece of communica-
each g_evu_:e on the recel\;e cha||1n Zas an opportunily, qaia individually. VMI 2.0 therefore defines a

to modify it (€.g., to _trans orm the data or remove juffer op structure, which represents a contiguous
header) before passing the message to the nextde\g k of memory within a bffier. A slab contains

and finally to the application. multiple bufer ops and is used to represent discon-
Messages and control instructions are passed By ous data. To reduce memory copies and improve

tween devices exclusively usingD request blocks performance, VMI 2.0 implements gather and scat-
(IRBs). Figure[P depicts the key fields within afe; gnerations. These are implemented in terms of
IRB. IRBs contain a stacl_<, a status flgld useq f%rdding (respectively, removing) Biar ops to (re-
return values, the connection the IRB is associatgflectively, from) slabs. An interesting capability that
with, and miscellaneous other pieces of state. TRgy| 2.0 provides to higher-level messaging layers is
most important is the IRB stack. Each element of t_t]ﬁe ability to “grab” a slab. That is, if a slab arrives
stack encapsulates the state for one of the deviggsiy, the network. but a messaging layer is unable
on the chain that the IRB was dispatched onto. T hrocess the data immediately, the messaging layer
command field specifies the current IRB type (@ acquire ownership of the slab. The VMI 2.0 core
ble[l). Message data is passed to the device with they |nadable devices are then prohibited from recy-
;Iab field, and other data is passed inand qut with ,t@ﬁ?ng the slab memory. After processing the data, the
input args and output args fields. When dispatchigessaging layer releases ownership back to VMI 2.0,
a new IRB or forwarding an existing IRB, a devicghich can then reuse the memory. The importance of

2In the context of this paper, “application” can also mean a high(a%la‘b'g_rabblng is that it obwate_s the n_eed to copy data
level messaging layer, such as MPI [9]. when it cannot be processed immediately.

IRB State for device 0 State for device 1
stack command
status input args
connection output args
misc. state slab
completion function
completion context
Fig. 2
STRUCTURE OF AN IRB
TABLE |
IRB TYPES
Type Meaning to a device
Attach Attach yourself to the specified chain.
Detach Detach yourself from the specified chain.
Connect Establish a connection to the specified peer.
Disconnect Tear down the given connection.

Connect request

A given peer wants to connect to us.

Disconnect request A given peer wants to disconnect from us.

Send Send the given slab on the given connection.
Receive A slab has arrived on the given connection.
Alert Notify an administrator to a given error condition.
Connection
: s
2 [stab | [stab | | siab b | stream &
Q 7]
o 7]
& Stream Slab Slab Slab Stream os]
> x
z \
-~ S
./ -
N
\
\
Slab \
\\
| Buffer Op | '
I |
\ Buffer Op 3
/
Buffer Op |
/
Z

Buffer Buffer

Fig. 3

VMI 2.0 pATA MODEL

Slabs are transmitted as datagrams ostraam D. Daemons

which is a directional connection between two pro- v\ 2.0 provides remote monitoring and manage-
cesses. There can be any number of streams linkignt facilities, which enables users and system ad-
two processes. That is, the data within a slab are glinjstrators to observe and control applications and

ways delivered in the order sent, but slabs are deldgmputers. These facilities are embodied in a col-
ered unordered relative to each other. Each streamg§jon of deemon processes. Because VMI 2.0 is

associated Wlth a_bldlrectlonab_nnectlon At most designed to handle enormous systems organized not
one connection binds each pair of processes, anghirely as SANs, but as collections of large SANs
is assumed that connection setup is comparativefiiriputed across the Internet, scalability is a key
costly, while stream setup is comparatively cheap. concern. The VMI 2.0 dsemons are therefore orga-
nized hierarchically, as described in T: I,

C. VMI 2.0 core VMI 2.0 includes a monitoring Iibrj%@that pro-
Table[T] enumerates the components that consfiges all of the back-end functionality that a moni-
tute the VMI 2.0 core. Only the Connection Managegpring application needs to acquire detailed informa-
and Stream Manager are aware of remote processgs about any node or VMI 2.0 process on the grid.
All of the other components work exclusively withrg date, we have implemented an application called
local VMI 2.0 objects. At startup, a process loadgama that gathers data with the monitoring library
whatever devices it needs (using the Device Magnq uses that data to present a 3-D view of all of the
ager), uses the Chain Manager to order these deviegiNs, nodes, and VMI 2.0 processes on the grid.
on various device chains—send chain, receive chagibcause any front end can use the monitoring library,
alert chain, and any other chains the process needgttrer user interfaces are possible, as well. Devel-
and establishes connections with remote procesg@grs can therefore implement customized interfaces

(using the Connection Manager). To send a messagf their particular interests and uses of the grid.
the process associates the data with a set fietsu

and bufer op$ (using the Bifer Manager), gathers
the bufer ops into a slab (using the Slab Manager),
and calls upon the Stream Manager to send the dataSection [1] described the implementation of
The Stream Manager dispatches a send IRB (USMMI 2.0 and how its novel IRB-based architecture
the /O manager) down the send chain. The final dand support for dynamically loadable modules yield
vice on the send chain injects the message into @reme usage flexibility. In Sectign]ill, we analyze
network. The reverse operations occur on the receff¢ €ficiency of VMI 2.0's design. Our goal is to
side, with the message being received by a deviéi@monstrate that VMI 2.0’s flexibility does not come
which then dispatches an IRB up the receive chagt.too high of a price, i.e., that a cluster’s availability,
The Stream Manager picks the transformed messat§@bility, and management can be increased without

off of the receive chain and delivers the message@gacting an undue amount of performance.
the process. It is difficult to devise an experimental setup

The VMI 2.0 core is divided into separate marto fairly analyze a system that is as dynamic and
agers for modularity. Although the current statiteconfigurable as VMI 2.0. We chose to use a
linkage ensures availablility, we plan eventually teonsistent—albeit non-minimal—configuration for
offload as many managers as possible into dyna@f-of the experiments in this section. In this config-
ically loadable devices. This will enable parts dfiration, VMI 2.0 loads two devices on each chain: a
VMI 2.0 to be upgraded or customized indepersM+Myrinet sourcgsink device and a “transfer” de-
dently of other parts. For example, a replacemeyice, a somewhat complex intermediate device that
Connection Manager might use a directory server li@ndles device failovér. Although the transfer de-
query remote process status. Or a replacement Dige serves little purpose in a one-network configu-
vice Manager might download missing device filegtion, we include it in our configuration to demon-
from the Internet on demand, install them, and coftrate that even a large device does not contribute no-
tinue running. ticeably to the critical path of communication. At

I1l. EvALuATION

3A buffer is analogous to a VIA [11] memory region, and dfbuop 4The transfer device will eventually also handle data striping, but
is analogous to a VIA descriptor. that feature is not yet functional at the time of this writing.

TABLE Il

VMI 2.0 MANAGEMENT SUBSYSTEMS

Subsystem Remote Operations

Alert Raise alert
Buffer Allocate, deallocate, register, and deregistéfdos; allocate and deallo-
cate bidfer ops (operations on data within affar)
Chain Allocatédeallocate chains, attacletach devices to chains
Connection [Establish and tear down connections with peer processes
Device Loadunload devices, poll devices
1/0 Dispatch IRB, complete IRB, pend IRB
Slab Allocat¢deallocate slabs, pugop buter ops onto a slab, copy data from
aslab
Stream O Begin stream, send a slab, end stream
TABLE Il
VMI 2.0 p&EMONS
Daemon Number Purpose

VMleyes One per node Keeps track of all of the VMI 2.0 processes on the node and the state
of each process’s devices. Forwards management messages from the
Reaper deemon to a process’s management device (if any). Forwards
event notifications from processes to the Reaper.

Reaper One per SAN Keeps track of all of the VMleyes deemons in the SAN. Used by the
Nark deemon to query or control the state of any node or process in
the SAN.

Nark One per grid Keeps track of all of the Reaper deemons in the grid. Used by mon-
itoring and management applications to query or control the state of
any node or process in the grid.

a minimum, the transfer devices redispatches eveéigM and Xfer devices” in the figure) as message size
IRB it receives, because it needs to receive the finaries. To determine the overhead caused by the
IRB return code to detect if the IRB has failed anttansfer device, we compare this to the bandwidth of
cannot be retransmitted on the same network (e.g¢onfiguration in which the transfer device is absent
due to a hardware failure). If we can show that th{&M device only). The third curve in Figurg]4 repre-
additional IRB processing does not noticeably deents the bandwidth measured by the (non-VMI 2.0)
grade performance, we can claim that the IRB modehndwidth program that ships with GNtgw GM).
is a reasonable way to achieve dynamicity in a mes-There are two observations one should make from
saging layer. looking at Figurg B First, the flierence between
We ran our experiments on a cluster comprised tfe GM and Xfer devices and GM device only curves
1 GHz x86 processors and interconnected with bots negligible. This is a good sign, because it shows
Myrinet and Gigabit Ethernet. that the extra overhead caused by IRB allocation, dis-
patch, transfer, and completion plus all of the device-
specific overhead does not impact raw bandwidth.
We can therefore hypothesize that adding more de-
We start by examining VMI 2.0’s raw bandwidthvices would likely add no more cost than thetei-
and latency performance. Figyre 4 shows the barehice between theM and Xfer devices andGM device
width of our baseline VMI 2.0 configuration (labelednly curves.

A. Point-to-point performance

180 100,000
X X XXX XXXXX
160 1 A
b ST @ 10,000 =
- 140 - VS ° A
2 / o sa
m 120 X .
v g; A
= £ 8 1,000 - «
= 100 | 5 A
B E o
S g0 A S A
= g 100 - vy
© &) CH
% 60 8 N A—";%
o 4 A_A_A A A a_agl[id
40 + f E 10 —‘;n)?‘xkxwyx x
20 - 53-
0 &&\&\&Fﬁ X\A\ T T T T T T T T T T T T T T 1 T
OANLO AN DOV O M~ O N0 —AMNOANLDANT O WOMN TN LN
SNIDOOOHMNINO AN SNDOOOHMNINO SN
AN 0OAL N0 N —AN<TOONLD AN N
NS S —ANoo
—I N —N
M essage size (bytes) M essage size (bytes)
=f—GM and Xfer devices GM device only == GM and Xfer devices GM device only
x Raw GM x Raw GM
Fig. 4 Fig. 5
VMI 2.0 BANDWIDTH VMI 2.0 LATENCY

The second observation is that VMI 2.0 is nearlyottlenecks lie. Figurg]6 contains a timeline of a
as fast as the underlying GM layer for small mesnessage transmission and reception, with each note-
sages. Unfortunately, as message size increasgssthy event labeled with its duration. Time flows
VMI 2.0 peaks out at only 155MB, relative t0 from top-to-bottom on the pade.

GM'’s 166 MB/s. This discrepancy corresponds to an The |argest single cost is the overhead observed by
overhead of 0.gs on VMI 2.0's long-message criti-the GM device when preparing data to be injected
cal path, corresponding primarily to fier manage- jnto the network. IRB handing tends to be fairly
ment and data reordering. The other Hockney ParafRexpensive, though—usually taking under Qu&5
eters ardp = 8.67us for GM, 9.47us for VMI 2.0, Thjs is promising, because it justifies VMI 2.0’s IRB
andny,; =1,329 for GM, 1,530 for VMI 2.0. model as not being inherently slow. Rather, the de-
vices are what need to be optimized.

Figure[$ shows the VMI 2.0 latency, which has A it of expl . t i
a minimum of 16.52:s when the transfer device is S apoint of explanation, aiter sending a message,

used, 14.9%s when it is not. For comparison, GM’ a process can compute for an arbitrary length of time.
minimum latency is 10.3is. While VMI 2.0 adds a . he subsequemlqmplete IRBS occur when VMI 2.0
large percentage to the raw GM latency, the per-bﬁepOIIeOI for possible progress.

cost does diminishes with increased message size.

This was largely to be expected. Because VMI 2
passes data by reference (as illustrated in Segtipn
[B), it rarely needs to copy data. As a result, the com- As the final experiment used to investigate the per-
paratively slow-growing per-packet and per-messaffgmance impact of adding VMI 2.0 to the critical
costs account for most of the variable part of the tpath of communication, we used MILC [14], a large,

l:%_ Application performance

tal. SU(3) lattice gauge theory application framework.
We ran theks_dynamical application, a simulation
B. Overhead analysis using dynamical Kogut-Susskind fermions.

To furthe_r reduce VMI 2.0's overhead and Ia_ten_cy'SFor space reasons, the receiving process is shown to the left of the
we must first determine where the communicatiaanding process instead of below it.

http://physics.indiana.edu/~sg/milc.html

a1 yordsia s

Q@ = < > ©Q =24 < >»
< g £ 3 = 3 £ 3
o @ = o @ ., =
2 o 5 8 e o 38
8888 3 88 S
s ° 5 °
(0] (0]
W
&
=}
a
i g
5 o
= a3
¢ 4
gg_o _E
2|8 o
Clk g2
o S|s
= =|®
8 lo z T
g o 3 ®
Q|
S = 3 © @B lo
—|® s w ¢
T xo Lo
w 5k
Do
g2 < o
Q =)
) B lo
—Q L (=
o |o;
g2 =
i ls 3
5% _ | ®]
D |
9 ol
3o ==
2 | 1 © ¢
5%
z g
@ | g Elo
o 225
o =y
S |o ;U?—’»F,-,
TN W
Q|
° %
T
@ | g|o
0lo g5
g'm T (5
& @
c |5 -—n
kel 1 Q|
)
=
(=N
13

gyl e®|dwo)d

Fig. 6

VMI 2.0 LATENCY BREAKDOWN

s1$9°0

gd|ew(dwod
SreT0

Sending process

s1'zz 0

sr'z.0

9

The experimental setup we used for MILC is
slightly different from that used in the previous ex-
periments. MILC is an MPI application, but we
have not yet had time to port MPI to VMI 2.0.
We do, however, have MPI running atop VMI 1.0.
Hence, we decided to take advantage of VMI's
support for dynamic modules and quickly wrote a
VMI 1.0 device called “VMIVMI”, which links with
the VMI 2.0 library and implements the VMI 1.0 API
in terms of the VMI 2.0 API. For our experiment,
we benchmarked MILC with problem side = 14
(~ 7 minutegrun). We used three device configura-
tions (Figuré J):

« VMI 1.0 atop a VMI 1.0 GM device

« VMI 2.0 atop a VMI 1.0 TCP device

« VMI 1.0 atop a VMI 2.0 device, which, in turn,

lies atop a VMI 2.0 GM device

MILC
MPI
VMI 1.0
VMI 1.0
VMIVMI
VMI 1.0 | VMI 1.0 device
GM TCP VMI 2.0
device | device | VMI 2.0
GM

device

Fig. 7

CONFIGURATION FOR RUNNING MILC

Figure[8 shows the performance results in terms
of MFLOPSnode. For small numbers of nodes, the
performance of the three configurations is similar.
However, for larger numbers of nodes, thal1+GM
andVvMI1+VMI2+GM curves remain near each other,
while thevMI1+TCP performance dropsfb

The conclusion we can draw from this is that
VMI 2.0's overhead is low enough that VMI 2.0 does
not significantly degrade application performance.
That conclusion is based on two facts:

. MILC is sensitive to network performance,
as evidenced by the high-overhedsti1+TCP
performing noticeably worse than the low-
overhead/MI1+GM.

. Adding VMI 2.0 to the critical communica-
tion path does not introduce enough overhead
to greatly reduce MILC performance, as evi-
denced by the small distance betw&gmn1+GM

10

120 As mentioned in Sectidn|ll, VMI 2.0’s basic archi-

100 | 'S“,;\'} o tecture is modeled after that used in the Windows NT
§ g0 | kernel [12]. Both VMI 2.0 and NT contain a set
> of core services (“managers”) that implement only
o) 60 basic functionality and a set of dynamically load-
T 40 able modules that extend the basic functionality with
= 5 more task-specific features. In both systems, the

loadable modules can either talk directly to physi-
0 cal devices or modify data as it flows to or from an-
1 2 4 8 168 3 other module. And in both systems, inter-module
Nodes communication is performed quickly and statelessly
by passing a generic structure (“IRB” in VMI 2.0,
—E—VMILGM —#=VMILHVMI2+GM —A— VMIL+TCP | “IRP” in NT) from module to module. The reason

we modeled VMI 2.0’s architecture after NT’s is that
we believe the design is extremely extensible, yet ex-
acts minimal performance penalty due to its inherent
asynchronicity.
We also drew inspiration from the Virtual Inter-
andvMI1+VMI2+GM. face Architecture (VIA)[11]. As TablgTV shows, the
In short, on both microbenchmarks and real appkamI 2.0 data model bears a strong resemblance to
cations, VMI 2.0 can add availability, usability, and/IA's. Both models allow gathering and scattering.
management features without adversefgeting the Both expose memory registration at the API level.
performance of the underlying messaging layer. Both have notions of ordered units of data sent within
larger, unordered units. And both are connection-
oriented but support fast, logical connections within
an established “physical” connection. The ability to
VMI 2.0 provides a wealth of features and capabigrab slabs comes from Converse|[17], which has an
ities. While there is no exactly comparable systeranalogous feature.
the following works overlap ours in important ways.
Coll, et al. [15] investigated a number of trade-
offs and design decisions surrounding multirail net-
works (i.e., multiple networks per node). They fo- Thanks to user-level messaging layers, near-
cused particularly on the dynamic selection of neftrardware communication performance is often avail-
works and the cost of using local versus global stagéle to applications running within a SAN. We claim
when selecting. VMI 2.0, which implements datthat availability, usability, and management are the
striping, can build upon Coll, et al.’s simulation renext logical step needed to make wide-area clusters
sults, which we hope will further increase VMI 2.0'f SANs a feasible platform for high-performance
performance. computing. VMI 2.0 is the result of oufi@rts to pro-
While Coll, et al.’s study involved a comparativelyduce a middleware layer that can tame these complex
large number of homogeneous networks (up to sevgind environments. VMI 2.0 both augments its base
per node), Lumetta, et al.'s Clumps work [16] exanfunctionality and interfaces with lower-level messag-
ined the tradefds in a high-speed messaging layang layers through “devices”—loadable modules that
when using exactly two heterogeneous networks pEn transform and communicate data. Using these
node: an SMP bus for intra-node communicatiattevices, VMI 2.0 provides the unique capability of
and a Myrinet network for inter-node communicabeing able to fail over from a downed network to a
tion. Although VMI 2.0 supports an arbitrary numworking one, even when the networks are dfel
ber of heteogeneous networks per node, many of the types. This is done transparently; applications
Clumps findings, such as the benefits of adaptivedye unaware of their communication being switched
adjusting polling frequency on a per-network basifilom one network to another. With a similar mecha-
are still applicable to VMI 2.0. nism, VMI 2.0 can aggregate bandwidth by striping

Fig. 8

APPLICATION PERFORMANCE (MILC)

IV. ReLaTED WORK

V. CONCLUSIONS

11

TABLE IV

ANALOGY BETWEEN VMI 2.0 anD VIA DATA MODELS

VMI 2.0 VIA Meaning

connection connection “Physical” connection between pairs of processes
stream sendeceive queue Logical connection within a physical connection
slab descriptor Scattergghthered (i.e., discontiguous) message
bufferop data segment Contiguous fragment of data within a message
buffer memory region Contiguous region of registered memory

data across multiple networks, again, even heteroge+esume using the primary network. The VMI 2.0
neous ones. deemons are organized hierarchically and designed to

VMI 2.0 devices are a powerful abstraction. Thegnnlmlze communication over higher-latency links.

enable users and system administrators to load ana/MI 2'0.5 erX|b|_I|ty and extensibility are due to its
ovel design, which separates core subsystems that

unload features at run time, thereby incurrin n@) . . . ;
y g vide only basic functionality, from loadable de-

penalty for unused features. Devices can be load® :) :
on a per-connection basis. This facilitates grid confLoes: Wh'c.h manipulate gnd communicate data us-
puting by enabling dierent forms of communication'n9 & 9eneric, IRB-based interface, from external dae-
to occur within a SAN and between SANs. For exons, which shuttle control and status messages be-

ample, an encrpytion device might be used for intea- if:e\élvg 2'?Cgipgssssezsart]ﬁ.smog'tg:'?r?aigg T:l:g;
SAN communication but not intra-SAN communi29 , ppiications. IS pap '
cation. Network devices negotiate connectivity WitP{

their remote peers; while a TCP device can conn prease the availability, usability, and manageability

Qf heterogeneous clusters of clusters and a promising

vice can communicate only with peers that are in t cans to_ h_arness the immense computing power of
is promising new platform.

same SAN, and a shared-memory device can com-
municate only with peers that are in the same com- VI. Future WORK
puter. This protocol negotiation is abstracted away
from the application, which requests connectiong, chain opens up limitless avenues for future re-
but need not specify which network(s) to use to €8

. . arch. For example, one could use VMI 2.0 as
tablish those connections. As a result, VMI 2.0 PTY vehicle for investigating the performance poten-

vides_ binary po_rtab_ility across grid configura_tion% | of compressing data before injecting it into the
That is, an application that runs over an InfiniBan etwork. If diferent applications are found to per-

g\elévrvgrl;ig?e%nheafrg'?n(;?ngkr}nvgahciﬂg:nsoﬁﬂgig?ﬁorm better with diferent compression algorithms, it
a simple matter for VMI 2.0 to dynamically load

over a grid that links those two hybrid SANstogethq1e the most appropriate compression device for a

using ATM. given application. A follow-on project could be to
VMI 2.0 integrates a remote monitoring and marstudy grid-based computing where some nodes ex-
agement interface. With the help of a set of dakibit asymmetric communication performance. A
mon processes, network repair personnel can localinember of home networks—cable modems, ADSL,
failed network connections from a single interface;@en 56K modems—give greater bandwidth in one
user can add a profiling device to a running appléirection than the other. By enablingfidirent de-
cation, profile the application’s communication berices to be loaded on each connection, VMI 2.0
havior, and remove the profiling device once enoughakes it possible to compress only in the low-speed
data has been collected; and a system administradrection while leaving data uncompressed in the
can instruct running applications to transfer over taigh-speed direction.
a backup network, upgrade the primary network’s In addition to pursuing new research ideas through
firmware, and then allow the running applicationgMI 2.0 loadable devices, future work also includes

VMI 2.0's ability to load generic devices onto

12

adding new IRB types for enhanced functionality angs] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner

i Vogels, “U-Net: A user-level network interface for parallel and
performance. EOI’ Instance, .neV\./ IRBs maY be used to distributed computing,” irfProceedings of the 15th ACM Sym-
support collective-communication operations, such posium on Operating Systems Principl&ec. 1995, pp. 40—

as barriers, reductions, and multicasts, or one-sided 53, Available: http://www.cs.cornell.edu/tve/u-net/

. . papers/sosp.pdf.
operatlons, namelyIH and Ger. These could be im- 7] lan Foster and Carl Kesselman, “Globus: A metacomputing in-

plemented natively by networks and network inter- frastructure toolkit,” International Journal of Supercomputing

ini _Applicationsvol. 11, no. 2, pp. 115-128, 1997, Availatletp:
faces that support them (e.g., InfiniBand|[18] sup e e

ports multicasts andu®?/Ger) and emulated on net- [8] Anand Natrajan, Marty Humphrey, and Andrew S. Grimshaw,
works that do not. Because the IRB protocol speci- “Capacity and capability computing in Legion,” iRroceed-

. . ings of the 2001 International Conference on Computational
fies that a device must forward an unknown IRB to Science (ICCS 2001)assil N. Alexandrov, Jack J. Dongatrra,

the next device in the chain, new IRB types will not Benjoe A. Juliano, Reén S. Renner, and C. J. Kenneth Tan,

break existing devices. Another major feature that Eds., San Francisco, California, May 28-30 2001, number 2073
) in Lecture Notes in Computer Science, pp. 273-283, Springer-

could be implemented by eXtending the eXiSting set Verlag, Available:http://legion.virginia.edu/papers/
of IRBs would be support for quality of service guar- _ iccs81.pdf.

: - : - [9] Message Passing Interface ForulPl: A Message Passing In-
antees or real-time communication. A QOS dewcég terface StandardJune 12, 1995, Version 1.1. Availablettp:

could manage the service negotiation and schedul- |//www.mpi-forum.org/docs/mpi-11.ps.Z.

i i i i i i [LO] Avneesh Pant, Sudha Krishnamurthy, Rob Pennington, Mike
ing, using multiple devices either for higher schedit Showerman, and Qian Lit, "UMI: An facient messaging

lable bandwidth or for the ability to honor service |ibrary for heterogeneous cluster communication,” Available:

guarantees even in the presence of network failures. http://www.ncsa.uiuc.edu/Divisions/CC/ntcluster/
. . . VMI/hpdc.pdf, 2000.
Fma”y’ a noteworthy necessity for VMI 2.0 is 6\{11] Compaq Computer Corp., Intel Corp., and Microsoft Corp.,
set of policy decisions for data striping. Additional Virtual Interface Architecture SpecificatiorDec. 16, 1997,

research is needed to determine how best to divide Avallable: http://waw.viarch.org/html/collateral/
san_10.pdf.

data across heterogeneous networks, each of Which Helen Custer,Inside Windows NTMicrosoft Press, Redmond,
is optimized for a dierent range of message sizes_ Washington, 1993.

. I . . [13] Myricom, Inc., Arcadia, California,The GM Message Passing
and each of which exhibitsfierent bandwidth, over- System July 18, 2000, Available’http://www.myri . com/

head, and—on a per-connection basis—Ilatency char- scs/G¥/doc/gm. pdf.

acteristics [14] Claude Bernard, Tom DeGrand, Carleton DeTar, Steve Gottlieb,
) Urs Heller, James Hetrick, Craig McNeile, Kostas Orginos, Kari
Rummukainen, Bob Sugar, and Doug Toussairfthe MILC
Code The MILC Collaboration, 6.150ct01 edition, Oct. 2001,
Available: http://www.physics.utah.edu/ detar/milc/
milcv6.ps.

[1] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan[é‘s] Sal_vz_ador Coll, Eitan Fr_ach"[‘ent_)erg, Fa_lbr_|2|0 Petrini, A(_iolfy
Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su, Hoisie, and Leonid Gur_llts, US|_ng multirail networks in high-
“Myrinet—a gigabit-per-second local-area networkEEE Mi- performance clusters,” iRroceedings of the 3rd IEEE Interna-
cro, vol. 15, no. 1, pp. 29-36, Feb. 1995, Availablettp: tional Conferenc_e on Cluster Computing (Cluste_r 200d¢w-
//v\'lww.myri,.Com/I"eSearCh/pliblicationS’/HOt.pS. port Beach, California, Oct. 8-11, 2001, Availablattp:

. www.c3.lanl.gov/ fabrizio/papers/cluster®1.pdf.
[2] Aberdeen Group, Inc., Boston, MassachusettsGiganet: // . : -
Building a Scalable Internet Infrastructure with Windows NTF6] Steven S. Lumetta, Alan M. Mainwaring, and David E.
. . . - . Culler, Multi-protocol Active Messages on a cluster of
and Linux 1999, Available: http://www.giganet.com/ S . ~oe
: —— SMP’s,” in Proceedings of SC97: High Performance Net-
technology/whitepapers_lookup.asp?id=5.

: A working and Computing San Jose, California, Nov. 15—
[3] LAN/N_IAN St.andards Commlttee, IEEE. stand'a.rd 802.3, 21, 1997, Available:http://www.supercomp.org/sc97/
part 3: Carrier sense multiple access with collision detec-

. - o dings/TECH/LUMETTA/INDEX.HTM.
tion (CSMA/CD) access method and physical layer specifica; proces B . i
tions,” Standard 802.3, IEEE Computer Society, New Yor@,]'?] Laxmikant V. Kak, Milind Bhandarkar, Narain Jagathesan, San

2 i jeev Krishnan, and Joshua Yelon, “Converse: An interopera-
2t;:|té- leﬁtigc_)(/)’/st'iigg;edds aiseznigg?ggs dsi,fgo/?[%(gkﬁ\gl ble framework for parallel programming,” Broceedings of the
Tanman,/802. 3-2000 . pdf, 10th International Parallel Processing Symposium (IPPS,96)

- ~ . . W Honolulu, Hawaii, Apr. 15-19, 1996, pp. 212-217, Available:
[4] Scott Pakin, V”.ay Karamcheti, and Ar_ldre_w A. Chien, F_ast http://charm.cs.uI::'L)uc.edu/papers/@?terOpIPPS%.ps.
Messages: fhcient, portable communication for Workstatlon[18]

Gregory F. Pfister, “An introduction to the InfiniBahtl ar-
clusters and MPPs/IEEE Concurrencyvol. 5, no. 2, pp. 60— : woor)
73, Apr.—June 1997, Availablit tp: //www-csag. ucsd. edu/ chitecture,” inHigh Performance Mass Storage and Paral

lel 1/0: Technologies and Applicationgdai Jin, Toni Cortes,

papers/fm-pdt.ps. .)
: . . and Rajkumar Buyya, Eds., chapter 42, pp. 617-632. John Wi-
[5] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, ley & Sons, New York, Nov. 2001, ISBN 0-471-20809-4.

and Klaus Erik Schauser, “Active Messages: A mechanism for
integrated communication and computation,”Froceedings of
the International Symposium on Computer Architectdr@o2,
Available: http://www.cs.cornell.edu/Info/Projects/
CAM/isca92.ps.

REFERENCES

Available: http://www.csse.monash.edu.au/ rajkumar/
superstorage/chap42.pdf.

http://www.myri.com/research/publications/Hot.ps
http://www.myri.com/research/publications/Hot.ps
http://www.giganet.com/technology/whitepapers_lookup.asp?id=5
http://www.giganet.com/technology/whitepapers_lookup.asp?id=5
http://standards.ieee.org/reading/ieee/std/lanman/802.3-2000.pdf
http://standards.ieee.org/reading/ieee/std/lanman/802.3-2000.pdf
http://www-csag.ucsd.edu/papers/fm-pdt.ps
http://www-csag.ucsd.edu/papers/fm-pdt.ps
http://www.cs.cornell.edu/Info/Projects/CAM/isca92.ps
http://www.cs.cornell.edu/Info/Projects/CAM/isca92.ps
http://www.cs.cornell.edu/tve/u-net/papers/sosp.pdf
http://www.cs.cornell.edu/tve/u-net/papers/sosp.pdf
ftp://ftp.globus.org/pub/globus/papers/globus.pdf
ftp://ftp.globus.org/pub/globus/papers/globus.pdf
http://legion.virginia.edu/papers/iccs01.pdf
http://legion.virginia.edu/papers/iccs01.pdf
http://www.mpi-forum.org/docs/mpi-11.ps.Z
http://www.mpi-forum.org/docs/mpi-11.ps.Z
http://www.ncsa.uiuc.edu/Divisions/CC/ntcluster/VMI/hpdc.pdf
http://www.ncsa.uiuc.edu/Divisions/CC/ntcluster/VMI/hpdc.pdf
http://www.viarch.org/html/collateral/san_10.pdf
http://www.viarch.org/html/collateral/san_10.pdf
http://www.myri.com/scs/GM/doc/gm.pdf
http://www.myri.com/scs/GM/doc/gm.pdf
http://www.physics.utah.edu/~detar/milc/milcv6.ps
http://www.physics.utah.edu/~detar/milc/milcv6.ps
http://www.c3.lanl.gov/~fabrizio/papers/cluster01.pdf
http://www.c3.lanl.gov/~fabrizio/papers/cluster01.pdf
http://www.supercomp.org/sc97/proceedings/TECH/LUMETTA/INDEX.HTM
http://www.supercomp.org/sc97/proceedings/TECH/LUMETTA/INDEX.HTM
http://charm.cs.uiuc.edu/papers/InterOpIPPS96.ps
http://www.csse.monash.edu.au/~rajkumar/superstorage/chap42.pdf
http://www.csse.monash.edu.au/~rajkumar/superstorage/chap42.pdf

	Introduction
	Motivation
	VMI 1.0
	VMI 2.0
	Data striping across heterogeneous networks
	Failover across heterogeneous networks
	Scalability upwards of many thousands of nodes
	Dynamic feature configuration
	Portability
	Remote monitoring
	Remote management
	Support for both parallel and distributed computing models

	Implementation
	IRB processing model
	Data model
	VMI 2.0 core
	Dæmons

	Evaluation
	Point-to-point performance
	Overhead analysis
	Application performance

	Related Work
	Conclusions
	Future Work
	References

